The Effects of Particle Size, Different Corn Stover Components, and Gas Residence Time on Torrefaction of Corn Stover
نویسندگان
چکیده
Large scale biofuel production will be possible only if significant quantities of biomass feedstock can be stored, transported, and processed in an economic and sustainable manner. Torrefaction has the potential to significantly reduce the cost of transportation, storage, and downstream processing through the improvement of physical and chemical characteristics of biomass. The main objective of this study was to investigate the effects of particle size, plant components, and gas residence time on the production of torrefied corn (Zea mays) stover. Different particle sizes included 0.85 mm and 20 mm. Different stover components included ground corn stover, whole corn stalk, stalk shell and pith, and corn cob shell. Three different purge gas residence times were employed to assess the effects of interaction of volatiles and torrefied biomass. Elemental analyses were performed on all of the samples, and the data obtained was used to estimate the energy contents and energy yields of different torrefied biomass samples. Particle density, elemental composition, and fiber composition of raw biomass fractions were also determined. Stalk pith torrefied at 280 °C and stalk shell torrefied at 250 °C had highest and lowest dry matter loss, of about 44% and 13%, respectively. Stalk pith torrefied at 250 °C had lowest energy density of about 18–18.5 MJ/kg, while cob shell torrefied at 280 °C had the highest energy density of about 21.5 MJ/kg. The lowest energy yield, at 59%, was recorded for stalk pith torrefied at 280 °C, whereas cob and stalk shell torrefied at 250 °C had highest energy yield at 85%. These differences were a consequence of the differences in particle densities, hemicellulose quantities, and chemical properties of the OPEN ACCESS Energies 2012, 5 1200 original biomass samples. Gas residence time did not have a significant effect on the aforementioned parameters.
منابع مشابه
Comparison of Chemical Composition and Energy Property of Torrefied Switchgrass and Corn Stover
In the present study, 6-mm ground corn stover and switchgrass were torrefied in temperatures ranging from 180 to 270°C for 15to 120-min residence time. Thermogravimetric analyzer was used to do the torrefaction studies. At a torrefaction temperature of 270°C and a 30-min residence time, the weight loss increased to >45%. At 180°C and 120 min, there was about 56 and 73% of moisture loss in the c...
متن کاملEffect of Torrefaction on Water Vapor Adsorption Properties and Resistance to Microbial Degradation of Corn Stover
The equilibrium moisture content (EMC) of biomass affects transportation, storage, downstream feedstock processing, and the overall economy of biorenewables production. Torrefaction is a thermochemical process conducted in the temperature regime between 200 and 300 °C under an inert atmosphere that, among other benefits, aims to reduce the innate hydrophilicity and susceptibility to microbial d...
متن کاملThe effect of bovine serum albumin on batch and continuous enzymatic cellulose hydrolysis mixed by stirring or shaking.
Bovine serum albumin (BSA) was applied as a model non-catalytic protein to enzymatic hydrolysis of Avicel and dilute acid pretreated corn stover at different reaction conditions to improve the understanding of its ability to enhance cellulose hydrolysis. Addition of BSA improved the 72 h hydrolysis yields in shake flasks by up to 26% for both substrates by reducing de-activation of the exogluca...
متن کاملEnergy Consumption of Corn Stover Size Reduction
Corn-based ethanol, the most common first generation biofuel in the US, plays an important role as a fossil fuels alternative. Second generation biofuels, which are mostly based on lignocellulosic biomass, have gained great attention in recent years. Size reduction of the lignocellulosic biomass is a key step to the efficiency of downstream processes (i.e., pretreatment, enzymatic hydrolysis, a...
متن کاملEffects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility.
Corn stover is emerging as a viable feedstock for producing bioethanol from renewable resources. Dilute-acid pretreatment of corn stover can solubilize a significant portion of the hemicellulosic component and enhance the enzymatic digestibility of the remaining cellulose for fermentation into ethanol. In this study, dilute H2SO4 pretreatment of corn stover was performed in a steam explosion re...
متن کامل